
## Phys 798S Superconductivity Fall 2025

# Prof. Steven Anlage Physics Department University of Maryland





Lecture 1





#### **Nobel Prizes in Superconductivity**

#### **The Nobel Prize in Physics 1913**

Heike Kamerlingh Onnes "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium"

#### The Nobel Prize in Physics 1962

Lev Davidovich Landau "for his pioneering theories for condensed matter, especially liquid helium"

#### The Nobel Prize in Physics 1972

John Bardeen, Leon Neil Cooper and John Robert Schrieffer "for their jointly developed theory of superconductivity, usually called the BCS-theory"

#### **The Nobel Prize in Physics 1973**

<u>Leo Esaki</u> and <u>Ivar Giaever</u> "for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively"

<u>Brian David Josephson</u> "for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects"

#### **The Nobel Prize in Physics 1987**

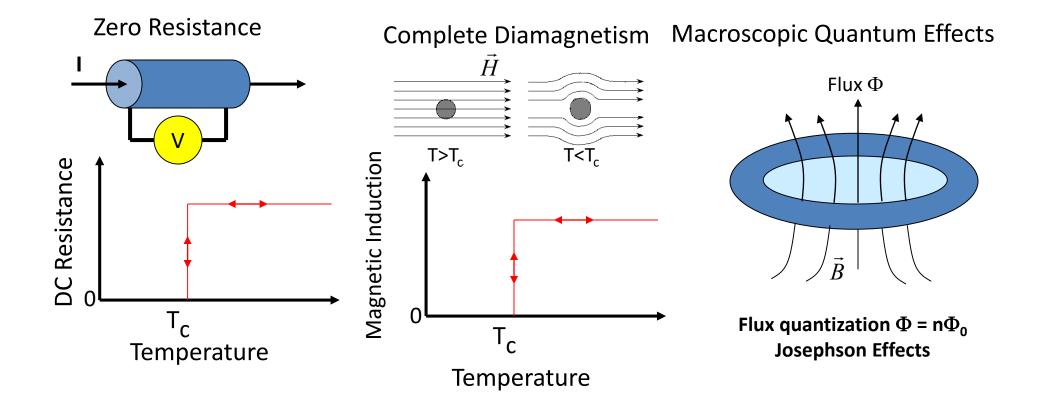
J. Georg Bednorz and K. Alexander Müller "for their important break-through in the discovery of superconductivity in ceramic materials"

#### The Nobel Prize in Physics 1991

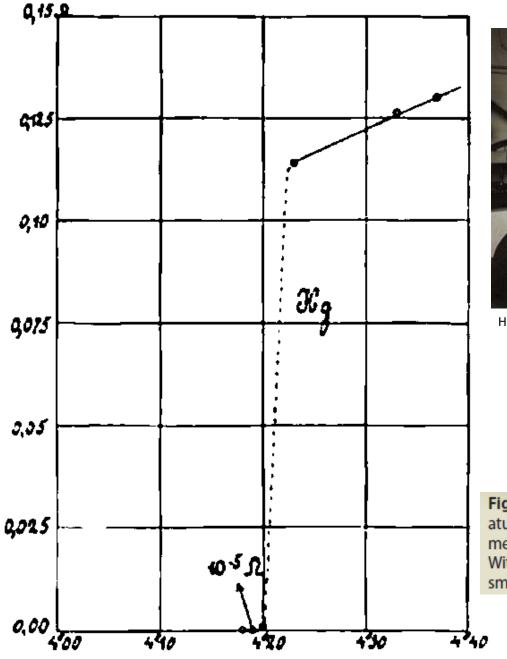
<u>Pierre-Gilles de Gennes</u> "for discovering that methods developed for studying order phenomena in simple systems can be generalized to more complex forms of matter, in particular to liquid crystals and polymers"

#### **The Nobel Prize in Physics 2003**

Alexei A. Abrikosov, Vitaly L. Ginzburg and Anthony J. Leggett "for pioneering contributions to the theory of superconductors and superfluids"


#### The Nobel Prize in Physics 20??

Your name here


## The Three Hallmarks of Superconductivity

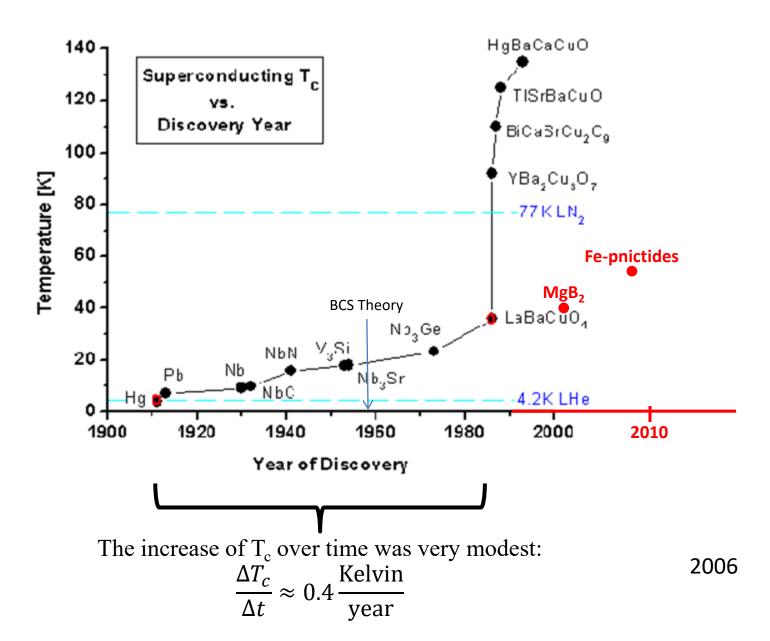
- 1) Zero Resistance
- 2) Meissner Effect
- 3) Macroscopic Quantum Effects

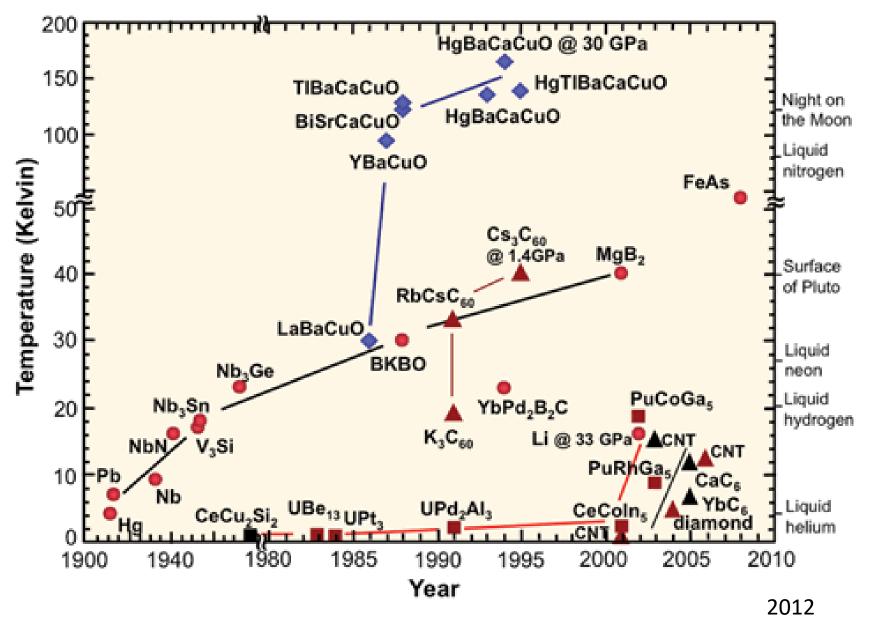
## The Three Hallmarks of Superconductivity



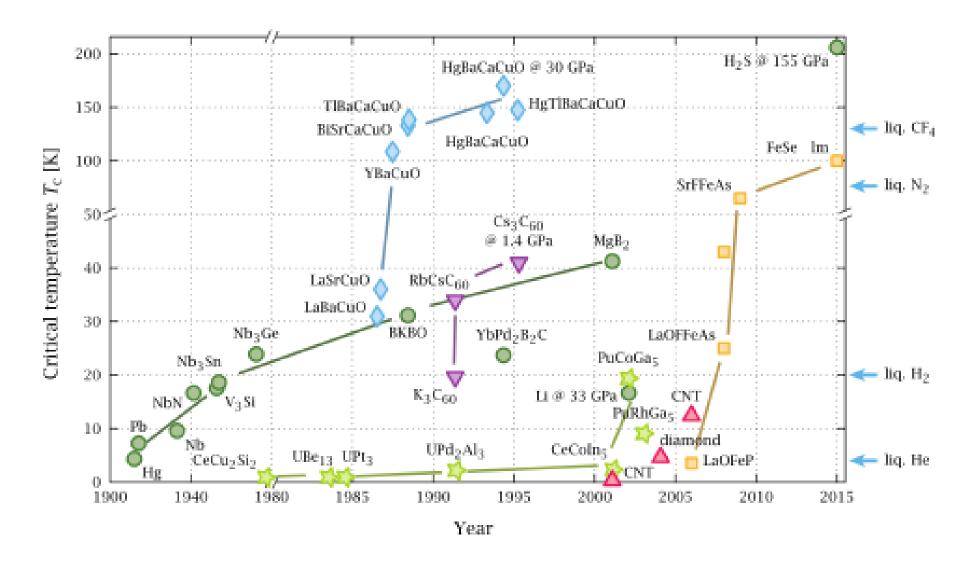
The zero resistance transition of Hg measured in 1911 by Kamerlingh Onnes.





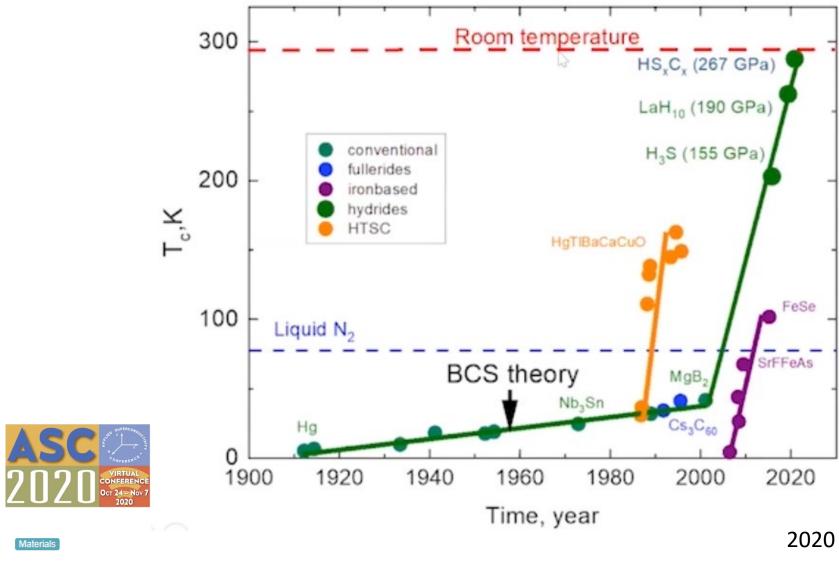


Heike Kamerlingh Onnes (right), the discoverer of superconductivity.

<u>Paul Ehrenfest, Hendrik Lorentz, Niels Bohr</u> stand to his left.


Figure 4. Historic plot of resistance (ohms) versus temperature (kelvin) for mercury from the 26 October 1911 experiment shows the superconducting transition at 4.20 K. Within 0.01 K, the resistance jumps from unmeasurably small (less than  $10^{-6}~\Omega$ ) to 0.1  $\Omega$ . (From ref. 9.)

Look at the History of the "History of Superconductivity" ....



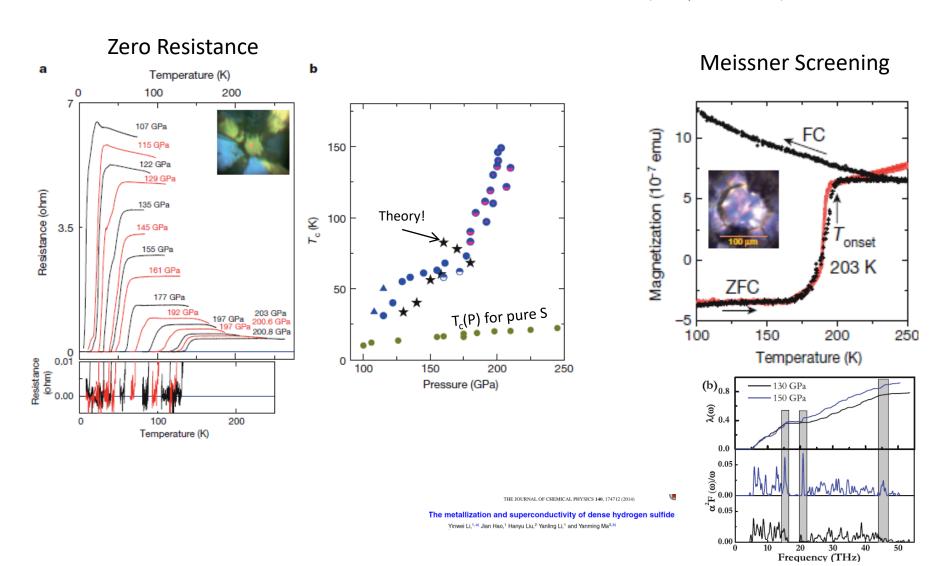



http://en.wikipedia.org/wiki/Superconductivity



2016

## Critical temperature of superconductivity with time




Mikhail Eremets Plenary: A Path Towards Room Temperature Superconductivity

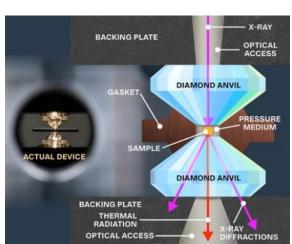
## Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

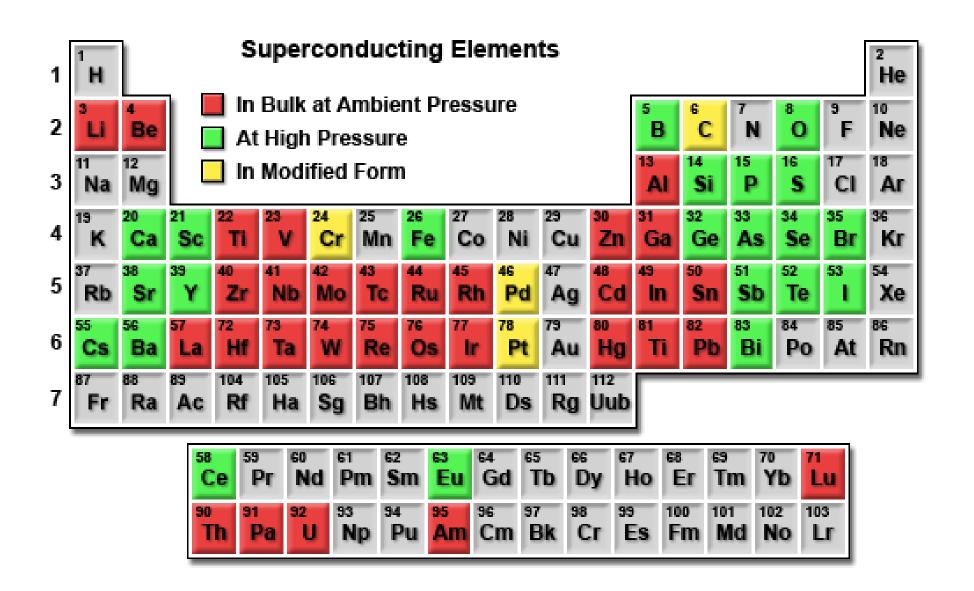
A. P. Drozdov<sup>1</sup>\*, M. I. Eremets<sup>1</sup>\*, I. A. Troyan<sup>1</sup>, V. Ksenofontov<sup>2</sup> & S. I. Shylin<sup>2</sup>

Nature 525, 73-76 (03 September 2015) doi:10.1038/nature14964



Room-temperature superconductivity in a carbonaceous sulfur hydride


Nature | Vol 586 | 15 October 2020 | 373

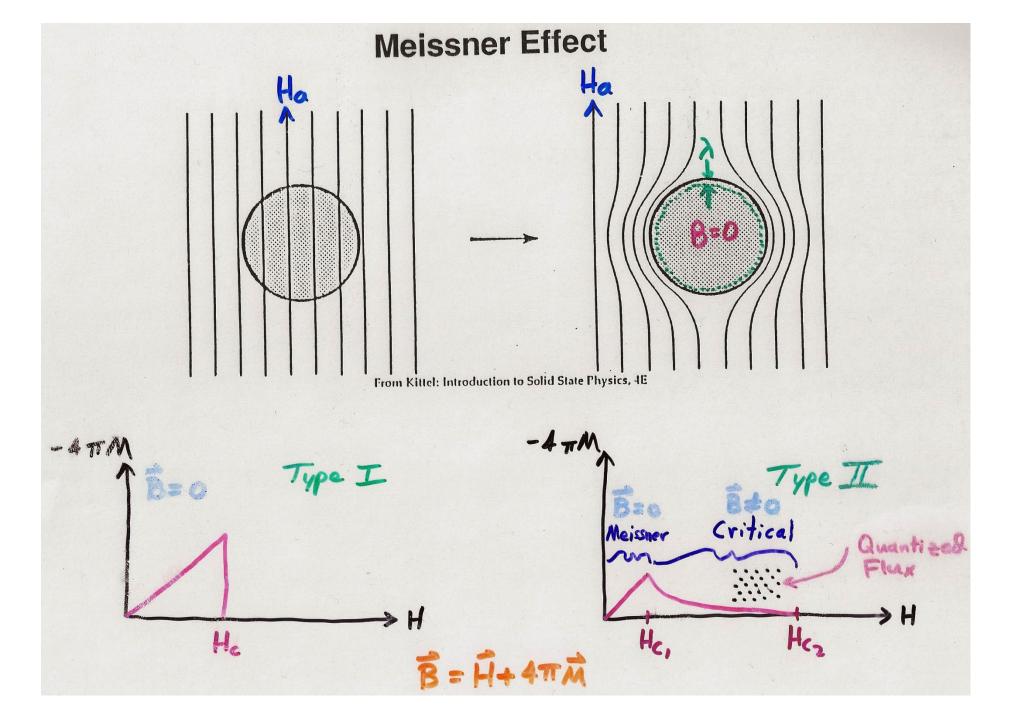

a Room temperature Run 1 275 Freezing point • Run 2 of water • Run 3 250 1.5 225 R  $(\Omega)$  $T_{\rm c}$  (K) 1.0 200 Run 1 (ρ) Photochemical process 175 Run 2 (ρ) 0.5 Electrodes Run 3 (ρ) A Run 4 (ρ) 150 Run 1 (χ')  $\square$  Run 2 ( $\chi'$ ) 125 150 250 100 200 300 150 250 200 photochemical process T(K)P (GPa) https://doi.org/10.1038/s41586-020-2801-z

1.2 I: 210 GPa II: 267 GPa € 60 0.8 R(T)/R(290 K) 0.4 0.5  $T/T_{c}$ 3 T 178 189 267 GPa • 6 T P (GPa) 225 250 275 300 185 175 195 T (K) T(K)

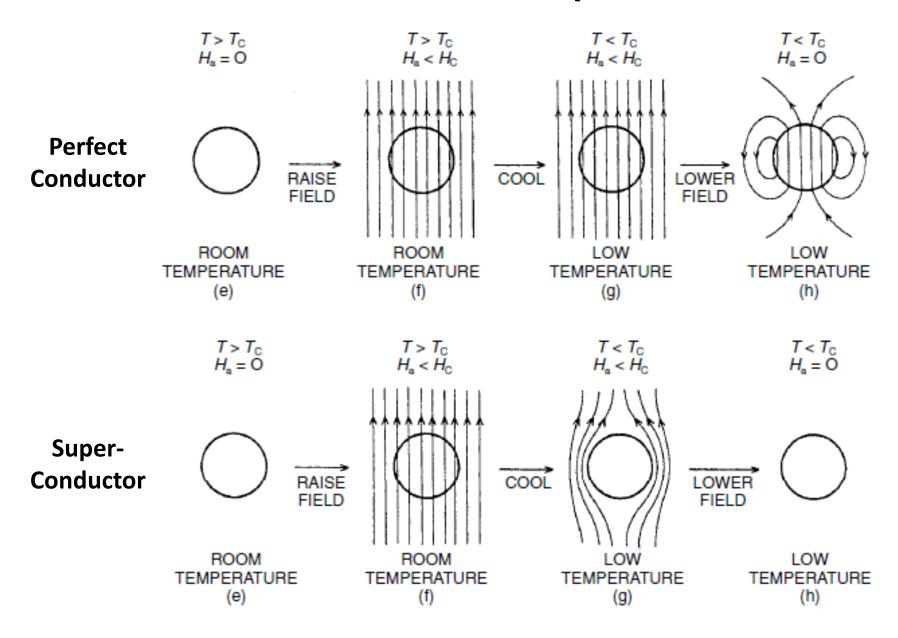
the extremely narrow widths of the transitions in the absence of a magnetic field, and the fact that the widths do not change with the applied magnetic field, suggest that the observed phenomena are not associated with superconductivity.

J. Hirsch and F. Marsiglio, Nature, 596, pp. E9–E10 (2021)



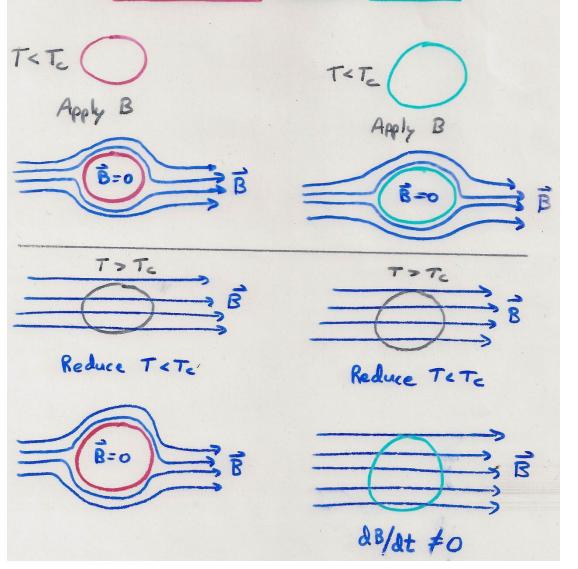



## Classes of Superconductors

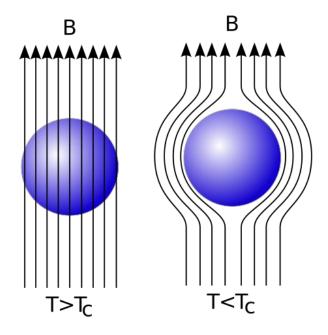

```
"Conventional"
                                            3D BCS s-wave
   Nb, Al, Pb, Sn, Nb<sub>3</sub>Sn, Nb-Ti, etc. T_c < 25 \text{ K}
   A3C60, electronically-doped C60, Mg. B2 Tc < 40 K
"Organic"
                                            Quasi 1-D,2-D
   (TMTSF)<sub>2</sub>X, (BEDT-TTF)<sub>2</sub>X
                                                      T_c < 12 \text{ K}
"Oxide"
   Ba(Pb-Bi)<sub>3</sub>O, Ba-K-Bi-O
                                                      T_c < 30 \text{ K}
"Heavy Fermion" Anisotropic (p- or d-wave)
   UPt<sub>3</sub>, UBe<sub>13</sub>, CeCu<sub>2</sub>Si<sub>2</sub>
                                                      T_c < 2 \text{ K}
                                                T. > 154 K
"Cuprates"
                                                   (under pressure)
       gh-T<sub>c</sub>:
Hg-Ba-Ca-<u>Cu-O</u>
   High-T:
                                                T<sub>c</sub> < 135 K
        Tl-Ba-Ca-Cu-O T_c < 125 \text{ K}
                                                T_{c} < 108 \text{ K}
         Bi-Sr-Ca-Cu-O
    Y-Ba-Cu-O
                                                 T_c < 93 \text{ K}
   Low-T:
         La-Sr-Cu-O
                                                T_c < 36 \text{ K}
    ★ Nd-Ce-Cu-O
                                                 T_c < 25 \text{ K}
"Ruthenates" Sr-Ru-O (p-wave) Te < 1.5K
Superfluid <sup>4</sup>He -> Bose-Einstein condensate: T<sub>c</sub>~ 2 K
Superfluid {}^{3}\text{He} \rightarrow S = 1 \text{ pairs}, p-wave superfluid: T_{c} \sim 10^{-3} \text{ K}
```

## The Three Hallmarks of Superconductivity

- 1) Zero Resistance
- 2) Meissner Effect
- 3) Macroscopic Quantum Effects




## Perfect Conductor vs. Superconductor




## Zero Resistance and Perfect Diamagnetism

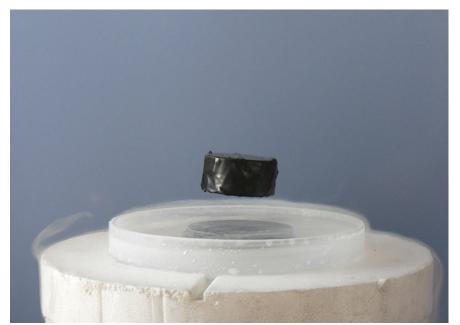
Superconductor vs Perfect Conductor



## **Meissner Effect (1934)**



magnetic field expelled from inside a superconductor


"diamagnetism"



Walther Meissner (1882-1974)

Superconductivity is more than just a state with zero resistance

B = 0

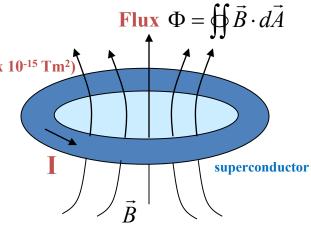


Dale J. Van Harlingen, UIUC PHYS 498 SQD Fall 2019

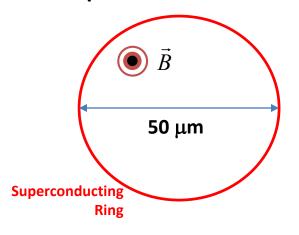
## The Three Hallmarks of Superconductivity

- 1) Zero Resistance
- 2) Meissner Effect
- 3) Macroscopic Quantum Effects

## Macroscopic Quantum Effects


Superconductor is described by a single-valued  $\Psi = |\Psi| e^{i\theta}$ **Macroscopic Quantum Wavefunction** 

$$\Psi = |\Psi| e^{i\theta}$$


### **Consequence:**

Magnetic flux is quantized in units of  $\Phi_0 = h/2e = 2.07 \times 10^{-15} \, \text{Tm}^2$ 

$$\Phi = n \Phi_0$$
,  $n = integer$ 



### **Example of Flux Quantization**



One flux quantum in this loop requires a field of B =  $\Phi_0$ /Area = 1  $\mu$ T

Earth's magnetic field  $B_{earth} \sim 50 \mu T$ 

## Flux Quantization in a HighTe SC C.E. Gough, et al. Nature 326, 855 (1987).

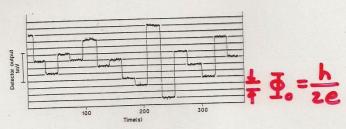
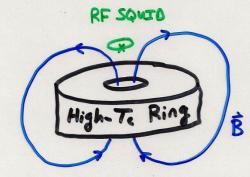
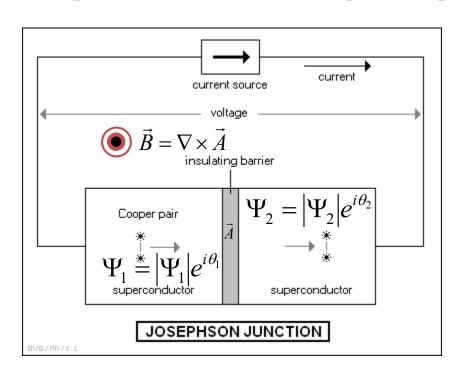




Fig. 2 Output of the r.f.-SQUID magnetometer showing small integral numbers of flux quanta jumping in and out of the ring.

YBa<sub>2</sub>(u<sub>3</sub>0<sub>7</sub> ceromic 4.2 K

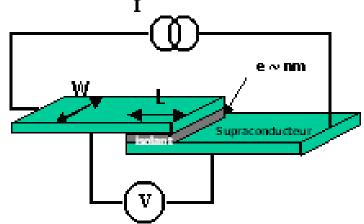


Experimental value for the flux quantum  $\Phi_0 = 0.97 \pm 0.04 \frac{h}{2e}$ 


SQUID magnetometer output stable for 1000 s

=> Rring < 10^{-13}\_{2}

## Macroscopic Quantum Effects


Continued

## **Josephson Effects** (Tunneling of Cooper Pairs)



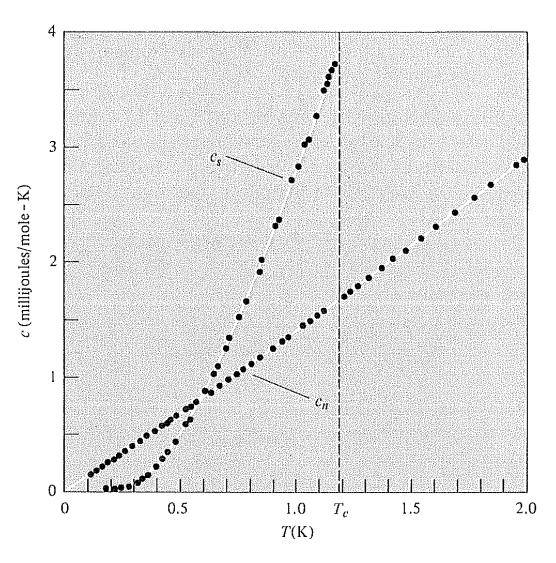
$$\delta = \theta_1 - \theta_2 - \frac{2e}{\hbar} \int_{1}^{2} \vec{A} \cdot d\vec{l}$$

Gauge-invariant phase difference



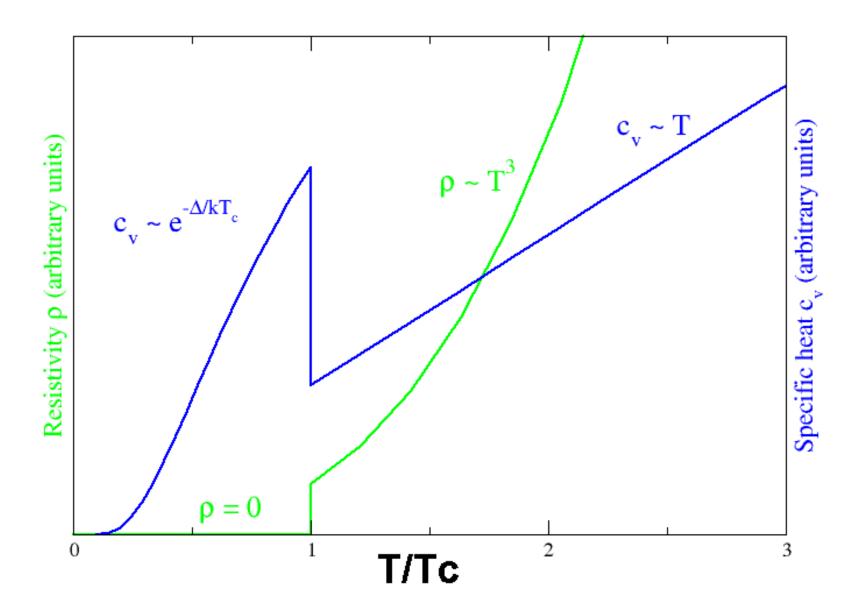
$$I = I_c \sin(\delta)$$
 Do

$$\frac{d\delta}{dt} = \frac{2e}{\hbar}V$$


 $\delta(t)$  is the solution of a nonlinear diff. Eq.

Circuit representation of a JJ




# The Thermodynamics of Superconductors

### **Low Temperature Specific Heat of Aluminum**



Ashcroft and Mermin, p. 734

Low-temperature specific heat of normal and superconducting aluminum. The normal phase is produced below  $T_c$  by application of a weak (300-gauss) magnetic field, which destroys the superconducting ordering but has otherwise negligible effect on the specific heat. The Debye temperature is quite high in aluminum, so the specific heat is dominated by the electronic contribution throughout this temperature range (as can be seen from the fact that the normal-state curve is quite close to being linear). The discontinuity at  $T_{\rm c}$  agrees well with the theoretical prediction (34.22)  $[c_s - c_n]/c_n = 1.43$ . Well below  $T_c$ ,  $c_s$  drops far below  $c_n$ , suggesting the existence of an energy gap. (N. E. Phillips, Phys. Rev. 114, 676 (1959).)



http://en.wikipedia.org/wiki/Superconductivity

### MEASURED VALUES OF THE RATIO"

 $[(c_s-c_n)/c_n]_{T_c}$ 

|          | $c_s - c_n$ |       |
|----------|-------------|-------|
| ELEMENT  | $C_{H}$     | $T_c$ |
| Al       | 1.4         |       |
| Cd       | 1.4         |       |
| Ga       | 1.4         |       |
| Hg       | 2.4         |       |
| In       | 1.7         |       |
| La (HCP) | 1.5         |       |
| Nb       | 1.9         |       |
| Pb       | 2.7         |       |
| Sn       | 1.6         |       |
| Ta       | 1.6         |       |
| TI       | 1.5         |       |
| V        | 1.5         |       |
| Zn       | 1.3         |       |

The 'Universal' Heat Capacity Jump at T<sub>c</sub>

"The simple BCS prediction is  $[(c_s - c_n)/c_n]_{T_c} = 1.43$ .

Source: R. Mersevey and B. B. Schwartz, *Superconductivity*, R. D. Parks, ed., Dekker, New York, 1969.

The prediction holds for weak-coupled SCs

## **Electronic Entropy of Normal Metal and Superconductor**

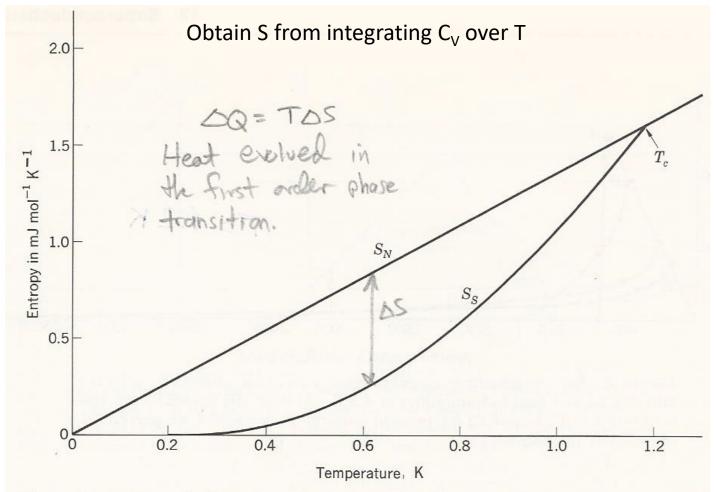



Figure 7a Entropy S of aluminum in the normal and superconducting states as a function of the temperature. The entropy is lower in the superconducting state because the electrons are more ordered here than in the normal state. At any temperature below the critical temperature  $T_c$  the specimen can be put in the normal state by application of a magnetic field stronger than the critical field.

## Free Energy of Normal Metal and Superconductor

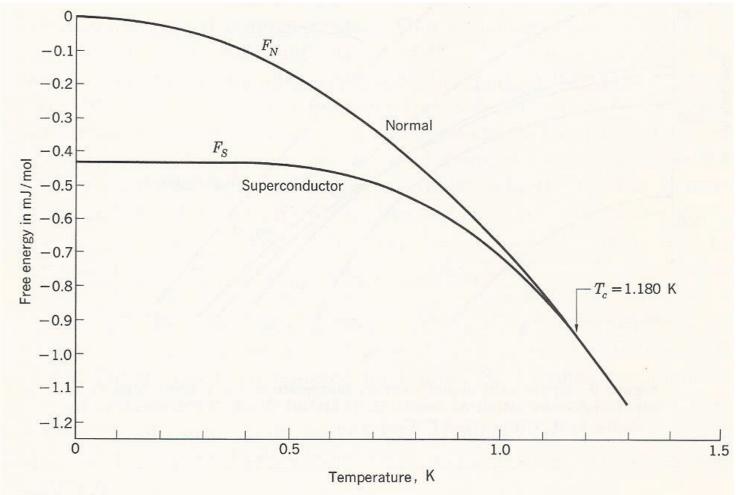
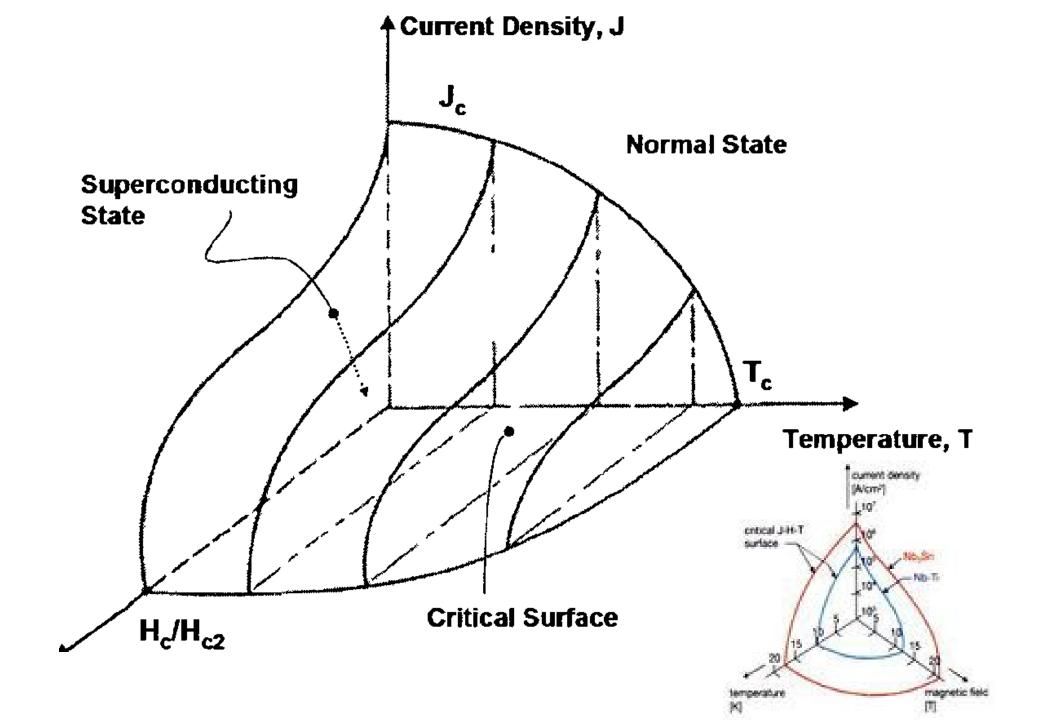




Figure 7b Experimental values of the free energy as a function of temperature for aluminum in the superconducting state and in the normal state. Below the transition temperature  $T_c = 1.180$  K the free energy is lower in the superconducting state. The two curves merge at the transition temperature, so that the phase transition is second order (there is no latent heat of transition at  $T_c$ ). The curve  $F_S$  is measured in zero magnetic field, and  $F_N$  is measured in a magnetic field sufficient to put the specimen in the normal state. (Courtesy of N. E. Phillips.)

C. Kittel, Solid Introduction to State Physics, 5<sup>th</sup> Edition, page 364.

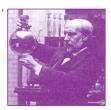
# The Limits of Superconductivity



## What are the Limits of Superconductivity?



| <u>History</u> | of Superconductivity and Supercond | ductor Devices       |       |                                                       |
|----------------|------------------------------------|----------------------|-------|-------------------------------------------------------|
| 1911           | Discovery H. Kamerlingh Onnes (L   | eiden)               | R = O |                                                       |
| 1933           | Meissner effect (Ochsenfeld)       |                      | B = O | ERA of discovery                                      |
| 1950           | Ginzburg-Landau theory             |                      |       |                                                       |
| 1957           | BCS theory (UIUC)                  |                      |       |                                                       |
| 1960's         | Push for higher Tc (failed)        |                      |       |                                                       |
| 1960           | Giaever tunneling (GE)             |                      |       |                                                       |
| 1962           | Josephson effect                   | "Superconductivit    | ïV    | ERA of devices                                        |
| 1964           | dc SQUID (Mercereau)               | is a solved problem" |       |                                                       |
| 1970           | rf SQUID (Zimmerman)               |                      |       |                                                       |
| 1970's         | Applications of SQUID's            |                      |       |                                                       |
| 1980's         | New materials                      |                      |       |                                                       |
| 1985           | Heavy Fermion SC's                 |                      |       | ERA of new materials and                              |
| 1986           | HTSC (Bednorz and Müller – IBM 2   | Zürich)              |       | unconventional superconductivity                      |
| 1990's         | Symmetry/Mechanism/Applications    | s of HTSC            |       |                                                       |
| 2000's         | Superconducting qubits             |                      |       |                                                       |
| 2010's         | Topological materials and devices  |                      |       | ERA of quantum information                            |
| 2020's         | Quantum Information Science and    | Quantum Comput       | ing?  | Dale J. Van Harlingen, UIUC<br>PHYS 498 SQD Fall 2019 |


## The HISTORY of SUPERCONDUCTIVITY and SUPERCONDUCTOR DEVICES (1911-1940)

#### The Birth of Cryogenics

The field of low temperature physics was initiated with the development of equipment and techniques that enabled the liquefaction of hydrogen and helium

#### 1898 Liquefaction of Hydrogen

James Dewar at the Royal Institute in London produced liquid hydrogen by Joule-Thomson expansion and measured its temperature to be 20K. A year later he formed



#### 1908 Liquefaction of Helium

Heike Kamerlingh-Onnes at Leiden first liquefied helium on July 10, 1908, and determined its temperature to be 4.2K. This achievement marked the onset of cryogenic research. Kamerlingh-Onnes was disappointed that he was unable to solidify helium by pumping on the vapor, but he was able to reduce its temperature to close to 1K.



#### The Discovery of Superconductivity

The age of superconductivity began with the observation of a precipitous drop to zero in the electrical resistance of mercury metal at low temperatures. Within the first decade, many of the most important distinguishing characteristics of the superconduct-

#### 1911 Discovery of Superconductivity

While measuring the temperature dependence of pure metals at low temperatures. Heike Kamerlingh-Onnes and Gilles Holst observed a sharp reduction in the resistance of Hg at 4.2K. This phenomenon was first reported to the Amsterdam Academy on April 28, 1911, and published in a communication in which it is stated that "a pure metal can be brought to such a condition that its electrical resistivity becomes zero, or at least differs inappreciably from that value" [Akademie der Wetenschappen 13, 1274 (1911)]. This marked the discovery of superconductivity and established the single most important property of a supercon-ducting material, the critical temperature.

4. The resistivity of mercury vanishes at the super

#### 1911 First of Many Superconductivity Conferences

Kamerlingh-Onnes first presented his results on superconductivity in Hg at the First Solvay Congress in the Hotel 2, 1911. The report attracted little



#### 1913 Nobel Prize in Physics

Awarded to Heike Kamerlingh-Onnes "for his investigations on the properties of matter at low temperatures which led, inter alia to the production of liquid helium."

#### 1913 Observation of the Critical Current and Critical Magnetic Field

Superconductivity was found to be destroyed by electrical currents or magnetic fields exceeding a threshold value (Kamerlingh-Onnes).

#### 1914 Observation of the Persistent Current in a Superconducting Coil

First observation of stable circulating supercurrents in a closed superconducting loop

#### More Materials, More Phenomena

The second decade of superconductivity saw the observation of superconductivity in new materials, including the first alloys, and the first indications of unusual magnetic behavior.

#### 1920 First Test of the Isotope Effect

Heike Kamerlingh-Onnes found no resolvable difference in the superconducting transi-tion temperature of Pb<sup>207</sup> compared to Pb<sup>208</sup>. A null result, but significant in light of the eventual importance of the isotope effect in the determination of the mechan

#### 1925 Concept of the Penetration Depth

By balancing the kinetic energy of the screening currents and magnetic field energy of a superconductor in an applied field, G. L. de Haas-Lorentz, the wife of Wander I. de Haas and daughter of Hendrik Antoon Lorentz, proposed that the currents flow within a surface layer that later became known as the London penetration depth. This idea went relatively unnoticed because it was published in the then obscure Dutch journal Physica, which later evolved into one of the preeminent journals for superconductivity

#### 1925 Observation of Magnetic Hysteresis



Wander J. de Haas found that the resistive transition in an applied field was observed to be irreversible and demonstrate sharn jumps. Experiments eliminated magnetic impurities and crystal structure changes as the origin of this effect, but the observation remained unexplained for many years.

#### 1928 Superconductivity in Binary Compounds

Superconductivity was initially studied only in elements, except for some preliminary observations in Hg-Sn alloys. The late twenties showed a burst of discoveries and studies of binary alloy superconductors at Leiden, including Ag<sub>3</sub>Sn, Cu<sub>3</sub>Sn, Bi<sub>5</sub>Tl<sub>3</sub>, and SbSn.

#### 1928 Superconductivity in Tantalum ( $T_c = 4.4K$ )

The discovery of superconductivity in Ta at 4.4 K was significant because it marked the first superconductor discovered outside Leiden in the labs of Walther Meissner at the PTB in Berlin. It was also the first refractory superconducting material. This lab would go on the discover superconductivity in many transition metal compounds.

#### 1930 Superconductivity in Niobium ( $T_c = 9.2K$ )

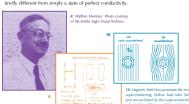
Walther Meissner found that niobium is superconducting, with the highest transition temperature of any element at 9.2 K. It remains the most important superconductor for

#### The Discovery of the Meissner Effect

The phenomenon of superconductivity was found to be even more remarkable with the discovery of the Meissner effect, the exclusion of magnetic field from the bulk of a superconducting sample. Following this discovery, the decade was dominated by the formulation and testing of electrodynamic models for superconductivity.

#### — 1934 London Electrodynamic Theory

A comprehensive model for the electrodynamics of the superconducting state, still in wide use today, was developed by brothers Fritz and Heinz London (Oxford). The pair of London equations proposed describe the temporal and spatial variation of the supercurrent. This model introduced the concept of the rigidity of the superconducting wavefunction and defined the London penetration depth characterizing the screening of magnetic fields at the surface of a superconductor.


#### 1932 Observation of Specific Heat Jump

A jump in the specific heat of Sn at the superconducting transition was observed by Wilhelm Keesom and Johannes Kok (Leiden). These investigators showed that a latent heat is only present in finite magnetic field.



#### 1933 Discovery of the Meissner Effect

Walther Meissner and Robert Ochsenfeld (Berlin) demonstrated that superconductivity is a state of perfect diamagnetism in which the magnetic field is zero inside a super-conductor. They suggested that the field was expelled from the bulk by spontaneous supercurrents on the surface. This work indicated that the superconducting state is distinctly different from simply a state of perfect conductivity.



#### 1933 Two-Fluid Model

Comelius Gorter and Hendrik B. G. Casimir (Leiden) proposed a two-fluid model that describes the superconductor as a temperature-dependent mixture of normal electrons and superelectrons. This picture was remarkably successful at characterizing thermo-dynamic properties and has similarities to the microscopic BCS state that would only emerge over 20 years later. It also predated the two-fluid model of superfluid helium





#### — 1935 Observation of Two Magnetic Fields

Magnetic moment measurements in PbTl<sub>2</sub> alloys by Rjabinin and Schubnikov showed



#### 1940 Measurement of Penetration Depth

The first measurements of the temperature dependence of the penetration depth were made by David Shoenberg (Cambridge). These results demonstrated the divergence of the penetration depth at T<sub>cr</sub> corresponding to the vanishing of the superfluid density.



## The HISTORY of SUPERCONDUCTIVITY and SUPERCONDUCTOR DEVICES (1940-1970)

#### Clues to the Mechanism

While activity was greatly slowed during the war years, this decade saw the recognition of a few key experimental clues that would ultimately point the way to a theoretical understanding of the mechanism for superconductivity.

#### 1941 Superconductivity in NbN ( $T_c = 16 \text{ K}$ )

This discovery, which came out of a program to study transition metal carbides and nitrides headed by Eduard Justi (Berlin), jumped the transition temperature to above

#### 1946 Evidence for a Superconducting Energy Gap From Thermodynamic Measurements

John Daunt and Felix Mendelssohn (Oxford) showed that there is no Thomson heat in the superconducting state. They suggested that this implied the existence of an energy gap between the superconducting electrons and the normal electrons of approximately

#### 1950 Discovery of the Isotope Effect

The observation that the transition temperature scales as the inverse square root of the nuclear mass in superconducting isotopes, first made by Charles Reynolds and Bernard Serin (Rutgers), and by Emmanuel Maxwell (NBS), gave a strong clue that phonons were involved in the mechanism for superconductivity.

#### 1950 Prediction of Flux Quantization

Fritz London first pointed out that the magnetic flux in multiply-connected supercon ductor loops should be quantized, a significant phenomenon important for device applications of superconductivity. It would be over a decade before this would be verified. At about the same time, his famous book Superfluids appeared, elucidating the now familiar analogies between superconductivity and superfluidity

#### 1950 Attractive Phonon-Mediated Electron-Electron Interaction

proposal by Herbert Fröhlich (Liverpool) and John Bardeen (Illinois) that an indirect attractive interaction could arise between electrons. The attraction relies on the polarization of the ionic lattice by electrons, creating a positively charged region.

#### 1950 Ginzburg-Landau Theory

A phenomenological theory of the superconducting state was developed by Vitaly on minimizing the free energy of a superconductor that describe the spatial variation of



#### Development of the Theory of Classical

The major theoretical breakthroughs of classic superconductivity were made in this decade, beginning with the phenomenological Ginzburg-Landau theory in 1950 and culminating in the microscopic BCS theory in 1957. Important progress was also made in advancing the transition temperature and critical field of superconductors.

#### 1957 Theory of the Mixed State

The field of vortex physics was launched with the predictions by Alexei Abrikosov of the mixed state characterized by the penetration of magnetic field in a periodic lattice of localized flux-quantized vortices. This phenomenon, caused by a negative normal state-superconducting state surface energy, distinguished Type I and Type II supercon

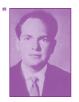
#### 1952 Non-Local Electrodynamic Theory

1954 Superconductivity in the A-15s

To fit penetration depth measurements obtained f introduced a non-local relationship between the supercurren density and the magnetic vector potential. This expression intro duced the concept of the electromagnetic coherence length and correctly anticipated the result that would emerge from the microscopic theory later in the decade.

n the early 50s, Bernd Matthias, I. Eugene Kunzler and John Hulm (Chicago) initiated a

materials approach for the formation of new


superconductors based on a set of chemical rules. This would ultimately result in the dis-

ticular the A-15s such as V<sub>2</sub>Ge (T<sub>c</sub> = 16 K)

Nb<sub>3</sub>Ge ( $T_c = 16 \text{ K}$ ), V<sub>3</sub>Si ( $T_c = 17.5 \text{ K}$ ), and the important magnet material Nb<sub>3</sub>Sn ( $T_c = 18 \text{ K}$ ).

conductor has three phases. In the Meissner state, the





1958 Proximity Effect

by Pierre-Gilles de Gennes and others.

**BCS** Theories

1959 Unification of the Ginzburg-Landau and

tallographic axis. c) In a perfect triangular flux lattice, each flux lin has six nearest neighbors. As shown in this computer digitize image, defects in the lattice appear as flux lines with differen (Bishop, Gammel, and Huse, Scientific American, 1993).

The spreading of the pair condensate at the interface between a superconductor and a

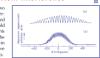
Lev Corkey demonstrated that the phenomenological Cinzburg-Landau equations

#### 1956 Concept of Electron Pairing The fundamental nature of the superconducting ground state was established by Leon

Cooper (Illinois), who showed that the normal Fermi liquid is unstable to the formation of bound electron pairs in the presence of any attractive interaction.

#### 1957 Microscopic Theory of Superconductivity

The landmark paper of John Bardeen, Leon Cooper, and John Schrieffer (Illinois) pre-sented a comprehensive microscopic theory for superconductivity based on a pair wavefunction. This theory has been impressively successful at describing the thermo-dynamic, electrodynamic, and magnetic properties of classic superconductors. The BCS theory was quickly confirmed by observations of the Hebel-Slichter peak in the NMR relaxation rate and infrared absorption measurements by Michael Tinkham (Harvard) and Rolfe Glover (Stanford).




#### Tunneling and the Josephson Effect

Two surprising discoveries, quasiparticle tunneling and the Josephson effect, marked the decade of the Sixties. These phenomena substantially broadened the scientific under standing and technological applicability of superconductors.

#### 1962 Observation of Quantum Interference

Josephson junctions interrupting a super conducting loop was first demonstrated by Robert Jaklevic, John Lambe, Arnold Silver, and James Mercereau (Ford). This ultimately led to the development of the c SQUID (Superconducting QUantum Interference Device), the most sensitive



33. First observation of the critical current modulation of

#### 1960 Extending the BCS Theory

Important extensions to the BCS formulation of superconductivity were contributed by several Russian theorists, most notably the Ellashberg strong-coupling theory, the Bogoliubov self-consistent field method, and the Abrikosov-Corkov picture of pair-

#### 1960 Quasiparticle Tunneling

The powerful tool of quasiparticle tunneling spectroscopy was born with the experiments of Ivar Giaever superconductors. This technique allows probing of the uasiparticle density of states and the energy gap of



#### 1961 Experimental Verification of Flux Quantization Quantization of the magnetic flux in a closed superconducting ring was verified by mag-

netization measurements by Bascom Deaver and William Fairbanks (Stanford).

#### 1962 First Commercial NbTi Superconducting Wire



superconducting magnets to above 10T. This technology revo utionized the high field magnet industry and impacted diverse fields, providing magnets for particle accelerators, NMR spec troscopy of biochemical structures, and magnetic resonance imaging (MRI) for medical diagnosis.



## 1962 The Josephson Effect

The remarkable phenomenon of dissinationless pair tunneling wa predicted by Brian Josephson, then a graduate student a Cambridge. Although Josephson supercurrents may have been pre-viously seen in tunneling measurements and dismissed as shorts, the definitive confirmation of the dc effect was made by John Rowell and Philip W. Anderson at Bell Labs, who observed the magnetic field modulation of the supercurrent. The ac Josephson effect was confirmed by Sidney Shapiro, who observed steps in the current-voltage characteristics of a tunnel junction irradiated with microwayes. The phase-dependent losephson supercurrent is the

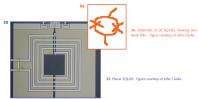


#### 1962 Bean Critical State Model

Charles P. Bean introduced a description of the profiles of magnetic flux penetrating a superconducting sample in an applied magnetic field. This was followed by a theory for thermally-activated flux creep in such systems by P. W. Anderson and Y.P. Kim.

#### 1964 Andreev Reflection

A. F. Andreev first described the process in which an electron excitation is retroreflect ed as a hole excitation with the creation of a Cooper pair. This phenomena plays a significant role in charge transport in losephson, tunnel junctions and mesoscopic super


#### 1965 Direct Evidence for the BCS Phonon

The most definitive proof that the attract tive phonon-mediated electron-electron interaction is responsible for classic BCS superconductivity was extracted from the electron-phonon coupling parameter  $\alpha^2F(\omega)$  from tunneling data using the inversion procedure of Bill McMiillan and John



#### 1965 Invention of the SQUID Voltmeter

The first practical superconducting device was the SQUID voltmeter developed by John Clarke (Cambridge). This instrument used a SLUG (Superconducting Low-inductance Undulating Galvanometer) in a potentiometric circuit to measure voltages as small as 10:14 volts five orders of magnitude better than the semiconducting devices of the time



#### — 1967 Measurement of e/h using the ac Josephson Effect

Barry Taylor, William Parker, and Donald Langenberg (University of Pennsylvania) used voltage steps in a microwave-irradiated Josephson junction to determine the ratio of e/h to high precision. This phenomena would ultimately become the basis for the standard

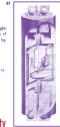


## The HISTORY of SUPERCONDUCTIVITY and SUPERCONDUCTOR DEVICES (1940-1970)

#### The Development of Superconductor Devices

The seventies saw the development of the most important applications of superconductivity, including superconductor electronic devices and high-field superconductor wires. During this decade, several new classes of materials were discovered that were precursors of breakthroughs on the horizon of superconductivity.

#### - 1973 Superconductivity in $Nb_3Ge$ ( $T_c = 23K$ )


This discovery by John Gavaler at Westinghouse marked the end of a period in which the superconducting transition temperature had been steadily pushed upwards. The superconducting transition temperature was to go no higher for over a decade.

## 1970-1980

#### 1970 Invention of the rf SQUID

The response of a superconducting loop containing a single Josephson junction, known (somewhat inappropriately) as an rf SQUID, was first used as a sensitive magnetic field detector by James Zimmerman and Arnold Silver (Ford).

37. Toroidal of SQUID developed by Biomagnetic Technology, Inc.



#### 1970s Nonequilibrium Superconductivity

Throughout the decade, there was a concentrated effort to undestand the behavior of superconductors driven our-designablium by fields or currents. Key phenomena studied in the contraction of the contract

#### 1970s Josephson Computer Program



IBM carried out extensive research to build a computer based on Josephson current-injection logic. Though moderately successful scientifically, the project was ultimately cancelled due to marketing issues and competition with silicon technology.

38. Josephson junctions serve as the basic circuit elements in a superconducting computer, and are shown here. A Josephson junction consists of two superconductors separated by a thin insulating layer, here the junctions lie under the four small circles visible in each brown region. (Matisco 1980).

#### - 1972 Nobel Prize in Physics

Awarded to John Bardeen, Leon Cooper, and Robert Schrieffer "for their jointly developed theory of superconductivity, usually called the BCS-theory."

#### 1973 Nobel Prize in Physics

Awarded to Leo Balá and Ivar Giaever "for his experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, nespectively" and Brian Josephson "for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the losephone officer.

#### - 1975 Superconductivity in BaPbBiO ( $T_c = 14K$ )

The first observation of superconductivity in an oxide by Arthur Sleight at Dupont. This interesting material did not have extraordinary properties or technological potential, but is a notable precursor to the high  $T_{\rm c}$  copper oxide materials found one decade later.

#### 1975 Use of SQUIDs for Neuromagnetism



The pioneering work of Samuel Williamson (NYU) began a still continuing quest to utilize SQUID detectors for the non-invasive imaging of magnetic signals from the brain. Clinical applications are emerging a detector arrays incorporating over 120 SQUIDs and sophisticated image analysis techniques are developed.

39, Array of SQUID magnetometers for neuromagnetic imaging (Neuromag, Ltd., Helsinki)

#### 1979 SIS Quasiparticle Mixer

Advances in microfabrication and the development of a quantum theory by John Tucker (Aerospace ) motivated the use of the sharp rise in the quasiparticle conduction as a mixer, an approach refined by Paul Richards and coworkers (Berkeley). SIS mixers remain the most sensitive detectors for submillimeter-wave refined aeronomy.



40. Submillimeter radio telescope array of the Berkeley-Illinois-Stanford Association (BIMA) located at Hat Creek, California. This telescope utilizes josephson junction SIS miser detector elements. Photo courtesy of BIMA.

#### - 1979 Superconductivity in $CeCu_2Si_2$ ( $T_c = 0.6$ K)

Several years after the discovery of the heavy fermion compounds, superconductivity was first observed in CeCu<sub>2</sub>Si<sub>2</sub> by Frank Steglich (Darmstadt). This discovery was the first indication that superconductivity could arise from mechanisms other than the conventional BCS ophonon-mediated interaction.

#### 1979 Superconductivity in Charge Transfer Salts

The first organic superconductor was the one-dimensional conductor (TMTSF)<sub>2</sub>PF<sub>6</sub>, discovered by Denis Jerome (Orsay) and Klaus Bechgaard (Copenhagen).

#### The Discovery of High Temperature Superconductors

Superconductivity's most dramatic decade started with a lull in scientific activity engeneed by the feeling that the field was nature and tapply understoot. At the same time, technological applications of superconducting materials and devices were expanding with notable advances in high field magnets for medical diagnosis and the development of Josephson junction and SQUID-based electronics. Halfway through this decade, the field exploded with the discovery only the temperature superconductors. Overshadowed but also significant have been the discoveries of other superconductor families, including the beasy termion and organic superconductor.

## 1981 Observation of Macroscopic Quantum Tunneling in Josephson Junctions and SQUIDs

Driven by theoretical prospess by Ambrony Leggett (Illinois) and others, and by advances in the microdiation of appearanduct or structure, superbane effect devices energed as the preeminent test system for observing macroscopic quantum phenomena (AVII). The Experiments weighted the existence of MVII and mucheded work toward the observation of macroscopic quantum coherence, a realization of the Schnodinger's cat paradox. This effort confinues today.

#### 1982 Magnetic Monopole Detection

The report of a possible observation of a magnetic monopole passing through a superconducting coil by Blas Cabrera (Stanford) nucleated a world-wide effort to search for monopoles with large and sophisticated SQUID detectors. This effort faded away by the end of the decade as no further events were detected.

#### 1983 Design of the Superconducting Super Collider

Planning began for the design and construction of a particle accelerator that would utilize superconducting magnets on a scale never before envisaged.



41. Superconducting magnets in the main accelerator ring at Fermilab.

## — 1983-1986 Superconductivity in Heavy Fermion Materials

The family of heavy fermion superconductors grew with the discovery of superconductivity in UBe<sub>13</sub> ( $T_c = 0.95$  K), UPs<sub>3</sub> ( $T_c = 0.5$  K), and URu<sub>3</sub>Si<sub>3</sub> ( $T_c = 1.2$  K). Evideno mounted for gaps with point and line nodes, and for a pairing mechanism of magnetiorigin.

#### - 1984 -1990 Superconductivity in Organic Materials

The critical temperature of organic superconducting materials continued to rise with the synthesis of two-dimensional layered materials with the  $\kappa$ -(ET)<sub>2</sub>X structure, reaching a maximum of 13 K in  $\kappa$ -(ET)<sub>2</sub>CU/N(CN)<sub>2</sub>/CI.

#### — 1986 Discovery of Superconductivity in

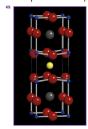
 $La_{1.85}Ba_{0.15}CuO_4$  ( $T_c = 35 \text{ K}$ )

Alex Müller and Georg Bednotz (IBM Zurich) observed superconductivity at 35K in a persoskite compound of La, Ba, and Cu in Jamasy 1986, although the results were not widely known until their publication in Zeitschrift der Physik in September. The phenomena was quickly confirmed in many laboratories. This discovery started the field of high temperature superconductivity and began the interes rush to find even higher transition temperature materials and to understand their properties that still continues today.

## 1980-1990



42. Alex Miller and Georg Bednorz on the day they learned they would share the 1987 Nobel Prize in Physics. Figure courtesy of Physica.


Figure countery of Physica.

43. The paper in which the discovery of superconductivity in La<sub>1.00</sub> E<sub>30.00</sub> C<sub>2</sub>O<sub>2</sub> at 35 K was first announced.

44. Layered structure of LaBaCuO<sub>4</sub> Figure courtesy of C. Jones and J. McDevitt.

## Character (Annual Character)

#### - 1987 Superconductivity in YBaCuO ( $T_c = 92 \text{ K}$ )



Superconductivity was first observed at temperatures above 77K in a compound of Y, Ba, and Cu in January of this year. The structure was quickby determined to be the famous oxygen-deficient 1-2-3 compound YBa<sub>2</sub>Cu<sub>2</sub>O<sub>2-x</sub> which has become the most studied superconductor of all time.

45. Crystal structure of YBaGuO. Figure

#### - 1987 Nobel Prize in Physics

Awarded to Johannes Georg Bednorz and Karl Alexander Müller "for their important breakthrough in the discovery of superconductivity in ceramic materials."

#### — 1987 Woodstock of Physics

A special session at the American Physical Society March Meeting in the New York Hilton was held on March 17, 1987. This event, which lasted through the night, attracted over 2000 scientists eager to hear the latest news on the high temperature superconductors.



e special session on superconductivity. Physics Today.



47. Scientists pouring into the session. Photo countesy

#### - 1986 Superconductivity in BiSrCaCuO ( $T_c$ = 110 K)

The transition temperature was pushed into triple digits with the discovery of the Bibased superconductors. The strong anisotropy of BSCCO has made it an attractive system for studying cuprate properties and vortex physics. BSSCO has also emerged as the choice for making superconducting wires, using powder in tube methods.

#### — 1988 Superconductivity in TIBaCaCuO (T₅=120 K)

The transition temperature continued to rise rapidly with the discovery of the thallium-based family of superconductors. The toxicity of TI has somewhat limited the

#### 1989 Observation of Two Superconducting Phase Transitions in UPt<sub>x</sub>

The widely suspected unconventional nature of the superconductivity of the heavy fermion compounds became apparent with the observation of two distinct peaks in the temperature dependent specific heat of UPt<sub>3</sub>, indicating two different bulk superconduction by the control of the control of

#### — 1989 Singlet Pairing in the Cuprates

Definitive evidence that the superconducting state of the high temperature cuprates involved singlet pairing was provided by NMR Knight shift measurements. This limited the possible candidates for the search for pairing symmetry which was soon to begin.

90

## The HISTORY of SUPERCONDUCTIVITY and SUPERCONDUCTOR DEVICES (1990-2000)

#### ng in the New York ugh the night, attract

#### **Understanding High Temperature Superconductivity**

The Nineties has focused on mapping the properties of the high temperature superconductors, in particular on the unconventional d-wave symmetry in the superconducting state and the unusual behavior of the normal state. The proposal of a wide range of theoretical models and the emergence of experimental tests to distinguish them characterizes much of the current activity in this field. [High T, superconductor applications have developed much more slowly than was originally anticipated, but promiing technologies begin to emerge by the end of the decade.

#### 1993 Verification of d-Wave Symmetry in Cuprates by Phase-Sensitive Tests

Motivated by theoretical predictions of d-wave symmetry, comer SQUID interferometer experiments show direct evidence for a phase shift of  $\pi$  between orthogonal directions in YBCO crystals. This result, now confirmed by many experiments and in many cuprates, has established their unconventional d-wave symmetry.

## 1990-2000

 SQUID spanning comer of YBCO cryst showing nodal structure of superconducti wave function deduced in experimer Figure courtesy of Dale van Harlingen.

1994 Superconductivity in  $Sr_2RuO_4$  ( $T_c = 1.3K$ )

1995 Characterizing the Pseudogap

1996 Observation of Vortex Lattice Meltina

Highlighting a decade of studying the vortex proper-

ties of the high temperature cuprates, researchers present the first definitive proof of a thermodynamic

first-order transition from a solid-like vortex lattice to a vortex liquid. This work and that of many investigators has helped to elucidate the complex magnetic

field vs. temperature phase diagram of the cuprates. 51. High temperature superconductors have all the phases found in the magnetic field-temperature phase diagram of normal superconductors (see 1937 entry on the mixed state), as well as a vortex liquid regime. This state exists because themal discusations melt the vortex solds.

tions have been proposed.

Although synthesized since the 1950s, this material has only recently been found to be

superconducting, and remains the only known superconducting layered perovskite which does not contain Cu. It has been suggested that the strong ferromagnetic fluctu-

ations in this material could produce odd-symmetry p-wave pairing, and experimental

cle density of states in underdoped cuprates. NMR, ARPES, specific heat, transport, and

above the superconducting transition. Theories attributing this phenomenon to such

mechanisms as phase fluctuations, preformed pairs, and antiferromagnetic spin correla



#### 1990 Theories on the Table

The decade opened with intense debate over the possible mechanism for supercoulcitivity, with major candidates incorporating the 1st model, antiferomagnetic spin fluctuations, resonant valence bonds, spin bags, interlayer tunneling, excentic super-conductivity, and ever phonons. Some of these, in particular the spin fluctuation mechanism, predicted d-wave symmetry in the cuprates, motivating experimental tests of the order parameter symmetry.

#### 1991 Observation of Anisotropy and Nodes in the Energy Gap

Early work in the cuprates suggested that the energy gap was not fully formed. This has been demonstrated by a wide variety of thermodynamic, transport, and tunneling measurements. Of particular note are NMR measurements which first ruled out isotropic s-wave paining; angle resolved photoemission measurements which map out the anisotropic magnitude of the energy gap; and low temperature penetration depth meanstorpic magnitude of the energy gap; and low temperature penetration depth means

gap; and low temperature penetration depth measurements, which showed a linear temperature dependence down to nearly 1 K in high quality single crystals of YBCO. These experiments were all strong evidence for nodes in the superconducting gap.



49. Angle resolved photoemission data showing nodes in the energy gap of the high temperature superconductor BIS CaCuO. Figure courtery of J. C. Campuzano.

#### ıg Phase

 $_{r}$ =120 K)

omewhat limited the

= 110 K

discovery of the Bide it an attractive syss also emerged as the

distinct peaks in the erent bulk supercon-

emperature cuprates ements. This limited was soon to begin.

#### FS angle

— 1991 Superconductivity in Alkali-Doped Fullerenes

Superconductivity was discovered in K<sub>3</sub>C<sub>60</sub> at about 20 K, an fcc crystal composed of carbon buckyballs intercalated with alkali atoms. The maximum known T<sub>c</sub> in these materials occurs at about 30K in the Rb-doped compound.

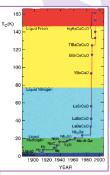


49. Polymeric fullerene chains in RbC (Stephens, 1994.)

#### — 1996 Observation of Striped Phases

Neutron scattering experiments indicate the presence of incommensurate spin and charge dynamic stripe ordering in HTSC compounds. Known to occur in other doped antiferromagnetic insulators such as the manganites, it is unclear yet what role if any these stripe phases play in the mechanism for superconductivity of the cuprates.

#### 1999 Applications of High Temperature Superconductivity Expand


During this decade, encouraging progress has been made in the implementation of high temperature superconductors in passive microwave circuits such as cellular phone filters, SQUID detectors for geophysical surveying medical imaging, and non-destructive testing, superconducting wires and tapes for power transmission, and high field magnature.

#### The Future of Superconductivity

As the millenium approaches, many major challenges exist that will make superconculus ductivity a shiverar field well into the next centru. Understanding the mechanism and educivelying a microscopic theory for the high temperature superconductors remains the highest priority. The real exclusionem, however, is the proposed of discovering newerlast with even higher transition temperatures and more exoticolism studies.

## The Future

- Determining the mechanism and establishing a microscopic theory of high temperature superconductivity.
- Reconciling the interplay of magnetism and superconductivity in the cuprates, ruthenates, and heavy fermion superconductors.
- Assessing the impact of unconventional gap symmetry on the properties and technological applications of superconductors with strong magnitude and phase anisotropies.
- Understanding the anomalous normal state of the cuprates, encompassing such mysteries as the pseudogap, stripe phases, doping dependences, and in particular, the relationship between the normal state properties and the onset of superconductivity.
- Exploring the fragility of the d-wave order parameter at interfaces, vortices, and defects, arising from the scattering of quasiparticles from the sign change in the order parameter.
- Elucidating the role of c-axis coupling in determining the superconducting transition temperature of the cuprates.
- Developing a viable technology for producing high current wires and tapes made of high temperature superconductors.
- Developing a viable tunnel junction technology for fabricating active high temperature superconducting analog and digital electronic circuits.
- Finding routes to raising the transition temperature and answering the provocative question of whether it will be possible to achieve room temperature superconductivity.



 A century of climbing transition temperatures. The bigger jumps are associated with the discovery of new families of compounds. Figure courtery of Bertram Batlogs.

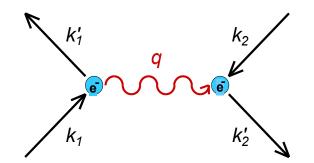
#### - 1993 Superconductivity in HgBaCaCuO ( $T_c = 133K$ )

The highest transition temperature material known to date is a compound containing Hg. Under pressure, the highest  $T_c$  observed is 165 K. It is ironic that Hg again plays a key role in the history of superconductivity.



52. A 1.5 T whole body MRI m that be lowered through the roof of hospit Photo counters of Oxford Instruments.




High field magnets are required for magnetic levitation
 proposed for used in high speed transit. Photo courtesy

## Conventional ("classic") superconductivity

## BCS theory:

Bardeen, Cooper, Schrieffer (1957)

 MECHANISM = attractive phonon-mediated electron-electron interaction → Cooper pairing



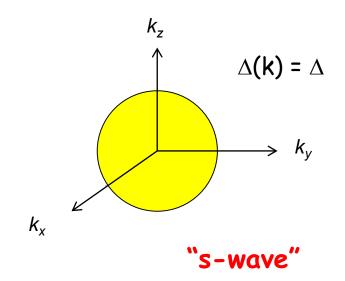


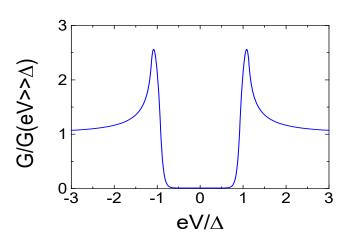




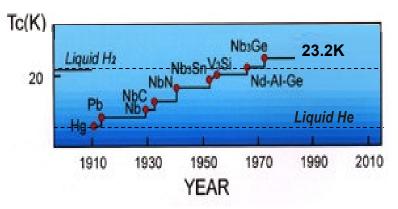
John Bardeen

Leon Cooper


Bob Schrieffer


• GROUND STATE = superfluid pair condensate

$$\psi = n_s e^{i\phi} \sim_{phase}$$


macroscopic phase coherence

EXCITATIONS = normal "quasiparticles" with an isotropic energy gap





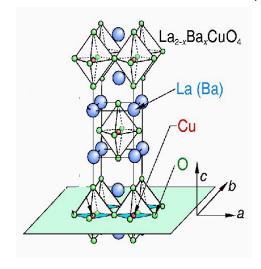


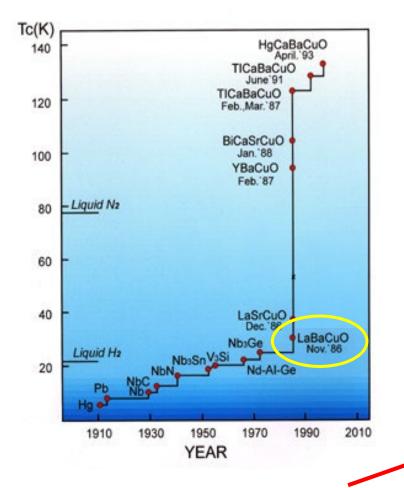


T<sub>c</sub> increased slowly from 4K to 23K over 75 years from 1911 to 1986

Dale J. Van Harlingen, UIUC PHYS 498 SQD Fall 2019

## High Temperature Superconductivity (1986)




Alex Müller

Georg Bednorz

IBM Zurich Research Laboratory



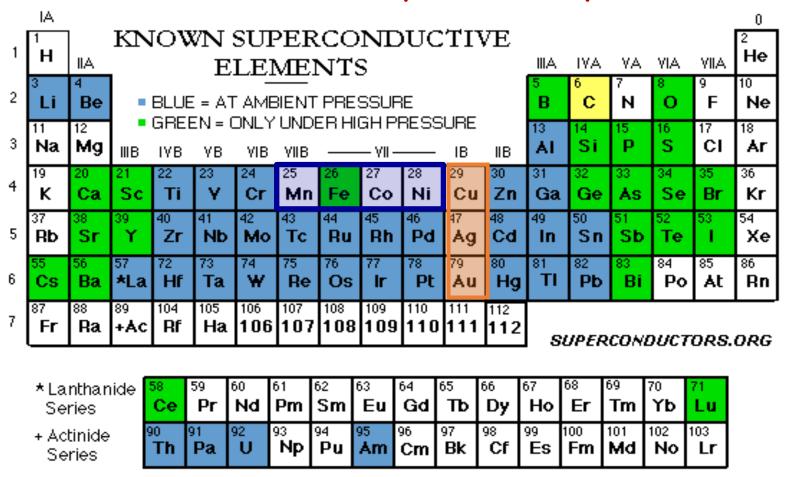


#### Woodstock of Music (1969)



3 days / 33 acts / 500,000 hippies

### Woodstock of Physics (1987)




**Mac Beasley!** 

8 hours / 50 talks / 2500 physicists

"Our lives will be changed" ... this did not turn out at expected but is rather true for physicists challenged our understanding of condensed matter physics opened new opportunities for superconductor research Dale J. Van Harlingen, UIUC PHYS 498 SQD Fall 2019

## Extent of Superconductivity



+ thousands of metallic compounds and alloys

More illuminating: what materials are NOT superconducting?

Magnetic materials (Mn, Fe, Co, Ni)

Good metals (Cu, Ag, Au)

## Most important for fundamental research:

| Al   | 1.2 <i>K</i> |
|------|--------------|
| In   | 3.4 <i>K</i> |
| Sn   | 3.7 <i>K</i> |
| Pb   | 7 <i>K</i>   |
| YBCO | 90 <i>K</i>  |

## Most important for applications:

| Al                 | 1.2 <i>k</i> |
|--------------------|--------------|
| Nb                 | 9 <i>K</i>   |
| NbN                | 16 <i>K</i>  |
| Nb <sub>3</sub> Sn | 18 <i>K</i>  |

### Most important for qubits:

| Αl | 1.2 <i>K</i> |
|----|--------------|
| Ta | 4.2K         |
| Nb | 9 <i>K</i>   |

### **Reasons to Study Superconductivity in 2025**

Superconductivity is a remarkably robust and widespread ground state for metals. Many different pairing states and pairing mechanisms have been identified. What new pairing states and mechanisms remain to be discovered? What remarkable electronic states of matter remain for us to find? How high can the superconducting  $T_c$ , critical fields  $H_c$ , and critical current densities  $J_c$  go?

Superconductivity also competes with many other ordered states of matter, such as ferro- and antiferromagnetism, charge density waves, topological insulating states, ferroelectricity, etc. This competition often gives rise to materials with surprising new properties and behavior as a function of temperature, magnetic field, pressure, strain, etc.

Quantum mechanics is 100 years old now, and superconductivity is fundamentally a quantum mechanical phenomenon. Superconductivity is a prime enabler for quantum information science and quantum computing. Understanding the basic physics of superconductivity is essential for bringing about successful applications in quantum technology.

What new quantum phenomena can be discovered based on superconductivity?

What new applications will superconductors have in quantum technology? Can we build single-photon detectors, the ultimate in sensitivity, that span the electromagnetic spectrum from the infrared to the radio frequencies?